Regulation of Jak2 tyrosine kinase by protein kinase C during macrophage differentiation of IL-3-dependent myeloid progenitor cells.

نویسندگان

  • P E Kovanen
  • I Junttila
  • K Takaluoma
  • P Saharinen
  • L Valmu
  • W Li
  • O Silvennoinen
چکیده

Differentiation of macrophages from myeloid progenitor cells depends on a discrete balance between cell growth, survival, and differentiation signals. Interleukin-3 (IL-3) supports the growth and survival of myeloid progenitor cells through the activation of Jak2 tyrosine kinase, and macrophage differentiation has been shown to be regulated by protein kinase C (PKC). During terminal differentiation of macrophages, the cells lose their mitogenic response to IL-3 and undergo growth arrest, but the underlying signaling mechanisms have remained elusive. Here we show that in IL-3-dependent 32D myeloid progenitor cells, the differentiation-inducing PKC isoforms PKC-alpha and PKC-delta specifically caused rapid inhibition of IL-3-induced tyrosine phosphorylation. The target for this inhibition was Jak2, and the activation of PKC by 12-O-tetradecanoyl-phorbol-13-acetate treatment also abrogated IL-3-induced tyrosine phosphorylation of Jak2 in Ba/F3 cells. The mechanism of this regulation was investigated in 32D and COS7 cells, and the inhibition of Jak2 required catalytic activity of PKC-delta and involved the phosphorylation of Jak2 on serine and threonine residues by the associated PKC-delta. Furthermore, PKC-delta inhibited the in vitro catalytic activity of Jak2, indicating that Jak2 was a direct target for PKC-delta. In 32D cells, the inhibition of Jak2 either by PKC-delta, tyrosine kinase inhibitor AG490, or IL-3 deprivation caused a similar growth arrest. Reversal of PKC-delta-mediated inhibition by the overexpression of Jak2 promoted apoptosis in differentiating 32D cells. These results demonstrate a PKC-mediated negative regulatory mechanism of cytokine signaling and Jak2, and they suggest that it serves to integrate growth-promoting and differentiation signals during macrophage differentiation. (Blood. 2000;95:1626-1632)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myeloproliferative Neoplasms Associated with Mutation in JAK2V617F and Tyrosine Kinase Inhibitors as Therapeutic Strategy

MPNs including a heterogeneous group of clonal or oligoclonal hamtopathies characterized by proliferation and accumulation of mature myeloid cells. JAK2 tyrosine kinase mutation is the most common molecular lesion identified in 90% of cases. JAK2 is involved in EPO signaling pathway, and mutations in it lead to EPO-independent spontaneous phosphorylation. Most tyrosine kinase inhibitors (TKI) a...

متن کامل

Phorbol 12-myristate 13-acetate inhibits granulocyte-macrophage colony stimulating factor-induced protein tyrosine phosphorylation in a human factor-dependent hematopoietic cell line.

The human myeloid cell line MO7 requires either granulocyte-macrophage colony stimulating factor (GM-CSF) or interleukin 3 (IL-3) for proliferation. We have previously shown that both GM-CSF and IL-3 transiently induce tyrosine phosphorylation of a number of proteins, including two cytosolic proteins, p93 and p70, which are maximally phosphorylated 5-15 min after addition of growth factor to fa...

متن کامل

Raf-1 protein is required for growth factor-induced proliferation of hematopoietic cells

Raf-1 is a 74-kD serine/threonine kinase located in the cell cytoplasm that is activated by phosphorylation in cells stimulated with a variety of mitogens and growth factors, including hematopoietic growth factors. Using c-raf antisense oligonucleotides to block Raf-1 expression, we have established that Raf-1 is required for hematopoietic growth factor-induced proliferation of murine cell line...

متن کامل

Protein tyrosine phosphatase 1B negatively regulates macrophage development through CSF-1 signaling.

Protein tyrosine phosphatase 1B (PTP-1B) is a ubiquitously expressed cytosolic phosphatase with the ability to dephosphorylate JAK2 and TYK2, and thereby down-regulate cytokine receptor signaling. Furthermore, PTP-1B levels are up-regulated in certain chronic myelogenous leukemia patients, which points to a potential role for PTP-1B in myeloid development. The results presented here show that t...

متن کامل

Jak1 plays an essential role for receptor phosphorylation and Stat activation in response to granulocyte colony-stimulating factor.

The proliferation and differentiation of neutrophils is regulated by granulocyte-specific colony-stimulating factor (G-CSF). G-CSF uses a receptor of the cytokine receptor superfamily and, in common with all members of the family, induces the tyrosine phosphorylation and activation of members of the Janus protein tyrosine kinase (Jak) family. In both myeloid cells and a human fibrosarcoma cell ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 95 5  شماره 

صفحات  -

تاریخ انتشار 2000